CS103 Syllabus

Part One: Discrete Mathematics					
Date	Topics	Readings	Assignments		
M April 3	Can computers solve all problems? Set Theory The Limits of Computing	Notes, Ch. 1 Handouts Online Guides			
W April 5	How do we prove results with certainty? Direct Proofs	Notes, Ch. 2 Handouts			
F April 7	How do we prove something without directly proving it? Proof by Contradiction Proof by Contrapositive	Notes, Ch. 2 Handouts	PS1 Out		
M April 10	How can we formalize our reasoning? Propositional Logic		PS1 Checkpoint Due		
W April 12	How can we reason about collections of objects? First-Order Logic I				
F April 14	How do we rigorously define key terms? First-Order Logic II	Handouts Online Guides	PS1 Due PS2 Out		
M April 17	How do we model relationships between objects? Binary Relations Equivalence Relations	Notes, Ch. 5	PS2 Checkpoint Due		
W April 19	What does it mean to compare two objects? Strict Order Relations	Notes, Ch. 5			
F April 21	How do we model transformations and associations? Functions Injections, Surjections, and Bijections	Notes, Ch. 6	PS2 Due PS3 Out		
M April 24	How do we reason about infinity? Cardinality Diagonalization	Notes, Ch. 6 Online Guides	PS3 Checkpoint Due		
W April 26	How do we model network structures? Graphs, Part I	Notes, Ch. 4			
F April 28	<i>Is disorder truly possible at a large scale?</i> Graphs, Part II The Pigeonhole Principle	Notes, Ch. 4	PS3 Due PS4 Out		

Date	Topics	Readings	Assignments	
M May 1	How can we reason about sequential processes? Mathematical Induction, Part I	Notes, Ch. 3	PS4 Checkpoint Due	
T May 2	<i>First Midterm Exam</i> 7:00PM – 10:00PM, Location TBA Covers material from PS1 – PS2			
W May 3	How does recursion relation to mathematical proof? Mathematical Induction, Part II	Notes, Ch. 3 Handouts		
	Part Two: Computability Theory			
F May 5	How do we mathematically model computers? Formal Language Theory DFAs I	Sipser 1.1	PS4 Due PS5 Out	
M May 8	What happens if computation involves choices? DFAs II NFAs	Sipser 1.2		
W May 10	How can we transform machines? Equivalence of DFAs and NFAs Closure Properties of Regular Languages	Sipser 1.2		
F May 12	Can we generate new programs from old programs? Regular Expressions Equivalence of Regular Expressions and NFAs	Sipser 1.3	PS5 Due PS6 Out	
M May 15	Can computers with finite memory solve all problems? Nonregular Languages The Myhill-Nerode Theorem			
W May 17	How do natural and formal languages overlap? Context-Free Grammars Context-Free Languages	Sipser 2.1		
F May 19	How do we model realistic computers? Turing Machines Designing Turing Machines	Sipser 3.1	PS6 Due PS7 Out	
M May 22	How powerful are Turing machines? The Church-Turing Thesis	Sipser 3.3		
T May 23	Second Midterm Exam 7:00PM – 10:00PM, Location TBA Covers material from PS3 – PS5			
W May 24	What does it mean to solve a problem with a computer?R and RE LanguagesThe Universal Turing Machine	Sipser 4.1 Sipser 6.1		
F May 26	What is the limit of algorithmic problem-solving? The Recursion Theorem Undecidability	Sipser 4.2	PS7 Due PS8 Out	
M May 29	Memorial Day No Class			

Date	Topics	Readings	Assignments		
W May 31	What is the full scope of computing power? Verifiers Unrecognizability	Online Guides			
Part Three: Intro to Complexity Theory					
F June 2	How do we measure the difficulty of problems? The P versus NP Question NP -Completeness I	Sipser 7.2 Sipser 7.3	PS8 Due PS9 Out		
M June 5	What makes hard problems hard? NP-Completeness II	Sipser 7.4			
W June 7	How does everything fit together? The Big Picture Where to Go from Here		PS9 Due No late submissions		
F June 9	<i>Final Exam: 3:30PM – 6:30PM</i> Location TBA Cumulative final exam, but focused on material from PS6 – PS9				